
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.6 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 34

Accurate and Efficient Query Processing at
Location-Based Services by using Route APIs

K. Bhavana1, Dr. K. Venugopala Rao2

1M. Tech Student, Department of CSE, G. Narayanamma Institute of Technology and Science, Mandal Shaikpet, District

Hyderabad, Telangana, India.
 2Professor, Department of CSE, G. Narayanamma Institute of Technology and Science, Mandal Shaikpet, District

Hyderabad, Telangana, India.

Abstract— Efficient query processing system provides
best search results to user by gathering user point of
interest. Mobile users required a Location based server
(LBS) to search the spatial related data. Existing system
provided route results but it takes more time to execute
the query and does not gives the accurate results means
traffic related travel timings. The proposed system is a
fastest processer for location search users. Here, LBS
obtain route travel times from online route API. So it
gives the accurate results to user by preventing number
route request and query execution time. We use range
query algorithm to reduce the number of route request
and Parallel Scheduling Techniques to reduce the query
execution time. Our experimental result shows that the
proposed system is more efficient than existing processer.
Keywords— Location based Server, Query Processing,
Query Execution Time, Range Query, Spatial Data.

I. INTRODUCTION
Based on user point of interest, user may search the data
related to street and restaurant data with location based
Services. By using location based Services, a route API
can find out exact travel times. Finding an optimal route
in a road network between specified source and
destination nodes (i.e., based on user point of interest) is
one of the important things in real-world applications
[10]. But whenever using route API, it takes more time to
access the route. So we can reduce this problem by using
Parallel Scheduling Techniques in LBS. LBS find exact
results by using lower/upper bound techniques. This
approach was recently shown to be very effective if lower
bounds are computed using Parallel Scheduling
Techniques [10]. The resulting lower bound could be used
for distinguishing local and global queries for guiding
local search.
Location-based server(LBS) use real-time geo-data from
a mobile device or Smartphone or Computer device to
provide data to user. Some services allow user to "check
in" at restaurants, coffee shops, book stores, concerts, and
other places or events. Often, businesses offer a reward
prizes, coupons or discounts to people who check in

Google Maps and Facebook Places are among the more
popular services. Location-based services use a
smartphone's GPS technology to find a person's location,
if that person has opted-in to allow the service to do that.
User can identify her area with using smartphone GPS
technology without the need for manual work.

II. LITERATURE SURVEY
Web search is common in our daily lives. Caching
method has been extensively used to reduce the query
execution time of the search system and reduce the travel
time on a road network. Another form of location related
web search, known as online shortest path search, is
enhanced approach due to advances in geo-positioning.
However, existing caching techniques are ineffective for
shortest path queries. This is due to several crucial
differences between web search results and shortest path
results, in relation to query matching, cache item
overlapping, and query execution time. So we can
manage those things by using Parallelized route requests.
If we are using LBS, It must be satisfied two things a)
exact query result (i.e., exact travel timing, exact
directions and exact map between sources to destination)
b) less query execution time.
In Existing System SMashQ (Spatial mash up framework
for k-NN queries) is used for best results. The k-nearest-
neighbor (k-NN) query is one of the well known spatial
query types for location-based services (LBS). It focus on
k-NN queries in time-based road networks, where the
travel time between source and destination locations may
changes significantly at different time of the day [3]. In
practice, it is difficult for a LBS provider to gather travel
timing to find the correct route for a user to a spatial
object of interest. So, we design SMashQ, a server-side
spatial mashup framework that enables a database server
to efficiently evaluate k-NN queries using the route data
and travel time accessed from an external Web mapping
service, e.g., Microsoft Bing Maps, Google API
Direction. Because of the expensive cost and limitations
of accessing such unnecessary external information, we
propose three shared execution optimizations for

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.6 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 35

SMashQ, to reduce the number of external route requests
and provide highly accurate query answers. But it is not
possible with SMashQ [13]. So here we are using range
query search for accurate travel timings and less query
execution time.
Use the Routes API to create a route and map that
includes two or more locations and to create routes from
major roads for security purpose. We can create driving
or walking mode routes. Route data consists of a
graphical representation of the route, a detailed turn-by-
turn route description, travel times and exact directions. It
enables mapping applications to provide the geographical
representation of the route together with the map data, so
that the route is displayed on the map to user.
The Routing API is customizable so that the route
calculation and additional route data can be adapted to
both consumer and enterprise applications and specific
application use cases. Here Routing API calculates routes
between two or more points based on user interest [1] and
it provides to the LBS and finally LBS send the additional
route-related information like exact Direction and Travel
timings to users.

III. SYSTEM DESIGN
The proposed query processing system is client-server
architecture and it uses a Google route API with clients as
mobile device (or) computer device and server on a
computer device. This system is used to reduce query
response time and number of route requests. The
architecture need to meet the necessary conditions for
implementing the whole system.

• First, User sends the point of interest to Location
based services and this LBS integrated with route
API [1].

• Second, This LBS uses the range search for
accurate lower/upper bound travel time.

• Finally, It uses the parallelize route request to
reduce the query response time.

System flow of the query processing can be identified as
shown in Fig.1.The process initiates with a client issues a
user query request. Each user having different point of
interest so user search the hotels based on interest. First
user send query to the location based services then these
LBS’s return the results with the help of Google route
API. In LBS a range search algorithm is used for accurate
query results (i.e., exact travel timings and directions) and
less query execution time. A user sends area to server for
Search the hotel. Based on area it showing the number of
best hotels, map button showing the route map, travel
timings and directions to the hotel, after selecting the
hotel.

cw-(e)=dist(e)/VMAX (1)

p.t c
- =sptcw-(q,p) (2)

In second step, LBS find out the lower/upper bound travel
timings with using above equations (1), (2).Where cw-(e)
means lower bound travel time of a edge and VMAX means
maximum speed.

Fig.1: System flow of query processing system.

IV. FRAMEWORK
To implement the complete system the procedures section
is introduced. The procedural section is examined in
various sections which are:
4.1 Location based Server
This LBS takes the input as query from user and send the
route request to online route API. LBS contains 3 parts
and those are point of interest, route log and road
network. It finds out user point of interest based on given
query by using point of interest field. It sends the user
interest as route request to route API. This route API
provides a shortest path to LBS [8]. It stores exact routes
and travel timings by using route log. Finally, it forwards
the results to user.
4.2 Parallel Scheduling Techniques
Our aim is to reduce the query response time and this
paper proposes advanced method for minimum query
response time through parallel scheduling techniques. We
can reduce the query response time by reducing number
of route request. Here we use two techniques to reduce
the customer response time and number of route request.
Customer response time takes the more time than time
spent on route request [4]. So we are considering query
response time from route API’s. However, Existing
parallel scheduling methods having some problems
related to route request because it takes extra route

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.6 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 36

requests. Here we have two parallelization techniques to
avoid the extra route requests. In first method, Greedy
parallelization takes less execution time but it does not
gives the exact result and another method Direction-based
parallelization takes less execution time and gives the
exact travel timings.
4.3 Range Query Algorithm
In this case, it presents our Route-Saver algorithm for
processing a range query. It applies the travel time bounds
discussed above to reduce the number of route requests.
To guarantee the accuracy of returned results, it removes
all expired routes in route log L. The algorithm first
conducts a distance range search for P on G [6] to obtain
a set C of candidate points. This algorithm consists of two
phases to process the candidate points in C and store the
query results in the set R. The first phase aims to shrink
the candidate set C, so as to reduce the number of route
requests to be issued in the second phase. First, we
execute Dijkstra on G two times, using edge weight
respectively.

 Fig.2: Predictive range query.

In predictive range query, there are three kinds of queries
are distinguished based on the time span and the region
they specify. Similarly, we distinguish three kinds of
queries for the predictive range query: timeslice query,
time-interval query and moving query. The above figure
shows examples of the three kinds of predictive range
queries in a 2-dimensional space. Together with the time
dimension, the coordinate space is 3-dimensional. We use
point objects in these examples for ease of presentation,
although the following discussions also apply to objects
with extents [11]. Q1 is a timeslice range query at
timestamp 1. Its query region is a disk. Object O1 is in it,

while O2 or O3 is not in it. Therefore the answer to Q1 is
O1. Q2 is a time-interval range query spanning the period
[2,5]. Its query region is a cylinder. At timestamp 2, no
object is in Q2. Object O2 is moving and it moves into
Q2 at timestamps 4 and 5. Objects O1 and O3 are not
moving and they stay outside of Q2 all the time.
Therefore the answer to Q2 is O2. Q3 is a moving range
query spanning the period [2,5]. The center and radius of
Q3 are both changing during the querying period. The
query region of Q3 is a leaning truncated cone. No object
is in Q3 at timestamp 2. Although O3 does not move, it is
in Q3 at timestamps 4 and 5 because of the movement of
Q3. The other two objects are outside of Q3 all the time.
Therefore the answer to Q3 is O3. From these examples,
we can see that the relative movements of objects and
time are important factors to determine answers [11]. So
the below route saver algorithm is used to reduce the
number of route request.

Input: function Route-Saver-RANGE (Query (q,T), Data
set P)

• The first phase aims to shrink the candidate set C,
so as to reduce the number of route requests to be
issued in the second phase.

• It execute Dijkstra on G two times so its compute
the bounds p.t

G
-, p.t G

+ and p.t G for every
candidate p € C.

• Next, for each candidate p remaining in C, its
compute exact travel time p.t

L using optimal sub
path property in L and use p.t

L to detect true
result.

• In the second phase, it issue route requests for the
remaining candidates in C then insert the returned
route into the route log L.

• This route provides not only the exact travel time
for p, but also potential information for updating
the bounds for other candidate p [1].

Output: This algorithm returns result set R to the user
with accurate query result.

V. EXPERIMENTAL RESULTS
The mobile system or any system required an online route
API to answer location related query and this route API
integrated with location based server to provide a best
search relevancy of results. However, it shows exact map
between source and destination along with query
execution time and here we can select the traveling mode.
It shows exact travel timing based on traveling mode.
Finally, it shows exact route direction to user.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.6 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 37

Fig.3: Showing map result

If user clicks map button in showing hotel details page
then it shows the map between source and destination.

Fig.4: Showing travel times

It shows exact travel timing from user location to
particular hotel.

Fig.5: Showing exact directions

It shows exact direction from user location to particular
hotel.

Fig.6: Showing different queries execution times

Our experiment shows the query execution time in Route
saver method. We find out SMQ* query execution time
based on survey. The above bar chart shows that query
response time of a two execution methods and it express
that route saver is more efficient than SMQ* in the point
of query response time.

VI. CONCLUSIONS AND FUTURE SCOPE
It proposes a solution for the LBS to process range
queries such that the query results have accurate travel
times and the LBS incurs few number of web mapping
requests. The time-tagged road network G and the route
log L to derive lower and upper bounds of travel times for
data points. During query processing, it exploits those
routes to derive effective lower-upper bounds for saving
web mapping requests, and examines the candidates for
queries in an effective order. This solution shows that
Route-Saver is more efficient than SMashQ.
In future, it can be enhanced to investigate automatic
tuning the expiry time d based on a given accuracy
requirement. This would help the LBS guarantee its
accuracy and improve their users’ satisfaction.

REFERENCES
[1] Yu Li and Man Lung Yiu, “Route-Saver:

Leveraging Route APIs for Accurate and Efficient
Query Processing at Location-Based Services,”
2015, pp. 235-249.

[2] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao,
“Query processing in spatial network databases,” in
Proc. 29th Int. Conf. Very Large Data Bases, 2003,
pp. 802–813.

[3] D. Zhang, C.-Y. Chow, Q. Li, X. Zhang, and Y. Xu,
“SMashQ: Spatial mashup framework for k-NN
queries in time-dependent road networks,” Distrib.
Parallel Databases, vol. 31, pp. 259–287, 2012.

[4] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding
fastest paths on a road network with speed patterns,”
in Proc. Int. Conf. Data Eng., 2006, p. 10.

[5] E. P. F. Chan and Y. Yang, “Shortest path tree
computation in dynamic graphs,” IEEE Trans.
Comput., vol. 58, no. 4, pp. 541–557, Apr. 2009.

[6] Google Directions API. (2013). [Online].
Available:https://developers.google.com/maps/docu
mentation/directions/

[7] H. Samet, J. Sankaranarayanan, and H. Alborzi,
“Scalable network distance browsing in spatial
databases,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2008, pp. 43–54.

[8] J. R. Thomsen, M. L. Yiu, and C. S. Jensen,
“Effective caching of shortest paths for location-
based services,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2012, pp. 313–324.

[9] Pankaj K. Agarwal, “Range Searching”,
Available:https://www.cs.duke.edu/~pankaj/publicat
ions/surveys/.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.6 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 38

[10] Peter Sanders and Dominik Schultes,” Robust,
Almost Constant Time Shortest-Path Queries in
Road Networks”, Available:
http://algo2.iti.kit.edu/schultes/hwy/hhTransit.pdf

[11] Rui Zhang1, H. V. Jagadish2, Bing Tian Dai3,
Kotagiri Ramamohanarao4,” Optimized Algorithms
for Predictive Range and KNN Queries on Moving
Objects”, Available:
http://www.ruizhang.info/publications/IS_MovingR
angeKnn.pdf.

[12] U. Demiryurek, F. B. Kashani, C. Shahabi, and A.
Ranganathan, “Online computation of fastest path in
time-dependent spatial networks,” in Proc. 12th Int.
Symp. Adv. Spatial Temporal Databases, 2011, pp.
92–111.

[13] Wan D. Bae1 , Shayma Alkobaisi1 , Seon Ho Kim1 ,
Sada Narayanappa1, “Supporting Range Queries on
Web Data Using k-Nearest Neighbor Search”,
Available:
http://infolab.usc.edu/DocsDemos/w2gis.pdf .

